In Class Notes

A \qquad is a transformation that preserves side length and angle measure.
\qquad
\qquad , and \qquad are rigid motions.

Two figures are \qquad
\qquad when one can be obtained from the other by a series of rigid motions.

Congruent figures have the same \qquad \& \qquad .

Sides

$\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, \overline{A C} \cong \overline{D F}$

Angles

$\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F$

Ex:) Identify any congruent figures in the coordinate plane.
Notes:

OYO:) A triangle has vertices $\mathrm{X}(0,4), \mathrm{Y}(4,4)$, and $\mathrm{Z}(4,2)$. Is $\Delta X Y Z$ congruent to any of the triangles in the previous example? Explain.

Ex:) Name the corresponding congruent parts of the given figures.

OYO:) Name the corresponding congruent parts of the given figures.
Notes:

Ex:) The red figure is congruent to the blue figure.
Notes:
Describe a sequence of rigid motions between the figures.

OYO:) The red figure is congruent to the blue figure.
Notes:
Describe a sequence of rigid motions between the figures.

Ex:) You can use the buttons shown at the left to transform objects in a computer program.
You can rotate objects 90° in either direction and reflect objects in a horizontal or vertical line. How can you transform the emoji as shown below?

OYO:) How can you transform the emoji as shown below?
Notes:

